L4 vs L7 Showdown

Author: Atif Siddiqui

Editors: Vinny Carpenter, Brian O’Rourke


This article will explain the role and types of load balancers before delving into it through the prism of Amazon Web Services (AWS). This post wraps up with a lab exercise on AWS Load Balancer migration.


A load balancer is a device that in its simplest form acts as a funnel for traffic before redistributing it. This is achieved by playing the role of reverse proxy server (RPS). While a load balancer can be a hardware device or a software component, this article will focus on a Software Defined Networking (SDN) load balancer.

Load Balancer dictating traffic distribution
Load Balancer dictating traffic distribution

OSI 101

Open System Interconnection (OSI) model is a conceptual illustration of networking. It shows the dependency of each layer serving the one above it. When discussing load balancers, transport and applications layer hold our interest.

Open Systems Interconnection model – high level
Open Systems Interconnection model – high level

There are two types of load balancers.

1. A Layer 4 load balancer works at the networking transport layer. This confines the criteria to IP addresses and ports as only the packet header is being inspected without reviewing its contents.

2.A  Layer 7 load balancer works at the application layer. It has higher intelligence because it can inspect packet contents as it understands protocols such as HTTP, HTTPS, WebSockets. This gives it the ability to perform advanced routing.

 Open Systems Interconnection model – close up [1]
Open Systems Interconnection model – close up [1]

AWS Perspective

Elastic Load Balancer (ELB) is one of the cornerstones of designing resilient applications. A walk down memory lane shows that beta release happened back in May 2009. Being a layer 4 (L4) load balancer, with ELB, routing decisions are made without inspecting contents of the packet.

The abstraction and simplicity of use remain as its core strengths: provisioning can be done through one click of a button. On the flip side, one of the features that is conspicuously missing is the support of server name indication (SNI). While wildcard and SAN certificates are supported, hopefully multiple certificates support is around the corner.

As a new offering in this space, AWS recently came out with Layer 7 Load balancer aptly named Application Load Balancer (ALB). This was announced in August this year with availability across all AWS commercial regions. Along with this announcement, the original load balancer was rebranded as Class Load Balancer.

Building blocks of an AWS application load balancer
Building blocks of an AWS application load balancer

AWS has also introduced target group as the new nomenclature. Target group is used to register EC2(s) that is mapped to port number(s). Target group is linked to ALB via Listener which in turn can have rule(s) association.

Register/de-register instance for Target group
Register/de-register instance for Target group

Some other noteworthy aspects about ALB are:

1. ALB supports HTTP and Web Sockets.

3. While AWS cli for Classic Load Balancer is aws elb, for Application Load Balancer it is aws elbv2.

4. ALB allows routing via path matching only with a ceiling of 10 URL based rules.

5. Like Classic, pre-warming for ALB is recommended in preparation for major traffic spike.

6. ALB’s hourly late is 10% lower than ELB.

7. CloudFormation supports ALB though, interestingly, it is referred to as ElasticLoadBalancingV2.

Migration Guide: ELB -> ALB

While ELB cannot be converted to an ALB, migration is supported [2]. AWS recommends python script [3] available in github. The following exercise was done on an Amazon AMI to test such a migration. Each command is preceded with a comment to indicate the purpose. It is assumed that the reader already has the AWS CLI installed, as well as has their credentials set up to be able to manipulate aws objects from the command line.

grab migration utility [4]

— verify existing ELB name via cli

— Conduct dry run for load balancer migration (specified incorrect region first time around). As python script needs boto3; prerequisite step is to run command via pip install boto3

— create application load balancer

Target group ARNs:


1. If your Classic load balancer is attached to an Auto Scaling group, attach the target groups to the Auto Scaling group.

2. All HTTPS listeners use the predefined security policy.

3. To use Amazon EC2 Container Service (Amazon ECS), register your containers as targets.

On November 22, the product team published [5] a new ALB feature for request tracing. This will provide the ability to trace through individual requests. I can’t wait to play with it.


  1. https://mplsnet.files.wordpress.com/2014/06/osi-model.gif
  2. http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/migrate-to-application-load- balancer.html
  3. https://github.com/aws/elastic-load-balancing-tools
  4. https://raw.githubusercontent.com/aws/elastic-load-balancing- tools/master/copy_classic_load_balancer.py
  5. https://aws.amazon.com/blogs/aws/application-performance-percentiles-and-request-tracing-for- aws-application-load-balancer/


About the Author:

Atif Siddiqui is a certified AWS Solutions Architect. He works as an Architect at General Electric (GE) in enterprise applications space. His responsibilities encompass critical applications with global footprint where he brings solutions and infrastructure expertise for his customers. He is also an avid blogger on GE’s internal social media.

About the Editors:

Brian O’Rourke is the co-founder of RedisGreen, a highly available and highly instrumented Redis service. He has more than a decade of experience building and scaling systems and happy teams, and has been an active AWS user since S3 was a baby.

Exploring Concurrency in Python & AWS

04. December 2016 2016 0

Exploring Concurrency in Python & AWS

From Threads to Lambdas (and lambdas with threads)

Author: Mohit Chawla

Editors: Jesse Davis, Neil Millard

The scope of the current article is to demonstrate multiple approaches to solve a seemingly simple problem of intra-S3 file transfers – using pure Python and a hybrid approach of Python and cloud based constructs, specifically AWS Lambda, with a comparison of the two concurrency approaches.

Problem Background

The problem was to transfer 250 objects daily, each of size 600-800 MB, from one S3 bucket to another. In addition, an initial bulk backup of 1500 objects (6 months of data) had to be taken, totaling 1 TB.

Attempt 1

The easiest way to do this appears to loop over all the objects and transfer them one by one:

This had a runtime of 1 hour 45 minutes. Oops.

Attempt 2

Lets use some threads !

Python offers multiple concurrency methods:

  • asyncio, based on event loops and asynchronous I/O.
  • concurrent.futures, which provides high level abstractions like ThreadPoolExecutor and ProcessPoolExecutor.
  • threading, which provides low level abstractions to build your own solution using threads, semaphores and locks.
  • multiprocessing, which is similar to threading, but for processes.

I used the concurrent.futures module, specifically the ThreadPoolExecutor, which seems to be a good fit for I/O tasks.

Note about the GIL:

Python implements a GIL (Global Interpreter Lock) which limits only a single thread to run at a time, inside a single Python interpreter. This is not a limitation for an I/O intensive task, such as the one being discussed in this article. For more details about how it works, see http://www.dabeaz.com/GIL/.

Here’s the code when using the ThreadPoolExecutor:

This code took 1 minute 40 seconds to execute, woo !

Concurrency with Lambda

I was happy with this implementation, until, at an AWS meetup, there was a discussion about using AWS Lambda and SNS for the same thing, and I thought of trying that out.

AWS Lambda is a compute service that lets you run code without provisioning or managing servers. It can be combined with AWS SNS, which is a message push notification service which can deliver and fan-out messages to several services, including E-Mail, HTTP and Lambda, which as allows the decoupling of components.

To use Lambda and SNS for this problem, a simple pipeline was devised: One Lambda function publishes object names as messages to SNS and another Lambda function is subscribed to SNS for copying the objects.

The following piece of code publishes names of objects to copy to an SNS topic. Note the use of threads to make this faster.

Yep, that’s all the code.

Now, you maybe asking yourself, how is the copy operation actually concurrent ?
The unit of concurrency in AWS Lambda is actually the function invocation. For each published message, the Lambda function is invoked, which means for multiple messages published in parallel, an equivalent number of invocations will be made for the Lambda function. According to AWS, that number for stream based sources is given by:

By default, this is limited to 100 concurrent executions, but can be raised on request.

The execution time for the above code was 2 minutes 40 seconds. This is higher than the pure Python approach, partly because the invocations were throttled by AWS.

I hope you enjoyed reading this article, and if you are an AWS or Python user, hopefully this example will be useful for your own projects.

Note – I gave this as a talk at PyUnconf ’16 in Hamburg, you can see the slides at https://speakerdeck.com/alcy/exploring-concurrency-in-python-and-aws.

About the Author:

Mohit Chawla is a systems engineer, living in Hamburg. He has contributed to open source projects over the last seven years, and has a few projects of his own. Apart from systems engineering, he has a strong interest in data visualization.

server-free pubsub ( and nearly code-free )

02. December 2016 2016 0

Author: Ed Anderson

Editors: Evan Mouzakitis, Brian O’Rourke


This article will introduce you to creating serverless PubSub microservices by building a simple Slack based word counting service.

Lambda Overview

These PubSub microservices are AWS Lambda based. Lambda is a service that does not require you to manage servers in order to run code. The high level overview is that you define events ( called triggers ) that will cause a packaging of your code ( called a function ) to be invoked. Inside your package ( aka function ), a specific function within a file ( called a handler ) will be called.

If you’re feeling a bit confused by overloaded terminology, you are not alone. For now, here’s the short list:

Lambda term  Common Name Description
Trigger AWS Service Component that invokes Lambda
Function software package Group of files needed to run code (includes libraries)
Handler file.function in your package The filename/function name to execute


There are many different types of triggers ( S3, API Gateway, Kinesis streams, and more). See this page for a complete list. Lambdas run in the context of a specific IAM Role. This means that, in addition to features provided by your language of choice ( python, nodejs, java, scala ), you can call from your Lambda to other AWS Services ( like DynamoDB ).

Intro to the PubSub Microservices

These microservices, once built, will count words typed into Slack. The services are:

  1. The first service splits up the user-input into individual words and:
    • increments the counter for each word
    • supplies a response to the user showing the current count of any seen words
    • triggers functions 2 and 3 which execute concurrently
  2. The second service also splits up the user-input into individual words and:
    • adds a count of 10 to each of those words
  3. The third service logs the input it receives.

While you might not have a specific need for a word counter, the concepts demonstrated here can be applied elsewhere. For example, you may have a project where you need to run several things in series, or perhaps you have a single event that needs to trigger concurrent workflows.

For example:

  • Concurrent workflows triggered by a single event:
    • New user joins org, and needs accounts created in several systems
    • Website user is interested in a specific topic, and you want to curate additional content to present to the user
    • There is a software outage, and you need to update several systems ( statuspage, nagios, etc ) at the same time
    • Website clicks need to be tracked in a system used by Operations, and a different system used by Analytics
  • Serial workflows triggered by a single event:
    • New user needs a Google account created, then that Google account needs to be given permission to access another system integrated with Google auth.
    • A new version of software needs to be packaged, then deployed, then activated –
    • Cup is inserted to a coffee machine, then the coffee machine dispenses coffee into the cup


  • The API Gateway ( trigger ) will call a Lambda Function that will split whatever text it is given into specific words
    • Upsert a key in a DynamoDB table with the number 1
    • Drop a message on a SNS Topic
  • The SNS Topic ( trigger ) will have two lambda functions attached to it that will
    • Upsert the same keys in the dynamodb with the number 10
    • Log a message to CloudWatchLogs
Visualization of Different Microservices comprising the Slack Based Word counter
Visualization of the Microservices


Example code for AWS Advent near-code-free PubSub. Technologies used:

  • Slack ( outgoing webhooks )
  • API Gateway
  • IAM
  • SNS
  • Lambda
  • DynamoDB

Pub/Sub is teh.best.evar* ( *for some values of best )

I came into the world of computing by way of The Operations Path. The Publish-Subscribe Pattern has always been near and dear to my ❤️.

There are a few things about PubSub that I really appreciate as an “infrastructure person”.

  1. Scalability. In terms of the transport layer ( usually a message bus of some kind ), the ability to scale is separate from the publishers and the consumers. In this wonderful thing which is AWS, we as infrastructure admins can get out of this aspect of the business of running PubSub entirely.
  2. Loose Coupling. In the happy path, publishers don’t know anything about what subscribers are doing with the messages they publish. There’s admittedly a little hand-waving here, and folks new to PubSub ( and sometimes those that are experienced ) get rude surprises as messages mutate over time.
  3. Asynchronous. This is not necessarily inherent in the PubSub pattern, but it’s the most common implementation that I’ve seen. There’s quite a lot of pressure that can be absent from Dev Teams, Operations Teams, or DevOps Teams when there is no expectation from the business that systems will retain single millisecond response times.
  4. New Cloud Ways. Once upon a time, we needed to queue messages in PubSub systems ( and you might you might still have a need for that feature ), but with Lambda, we can also invoke consumers on demand as messages pass through our system. We don’t necessarily hace to keep things in the queue at all. Message appears, processing code runs, everybody’s happy.

Yo dawg, I heard you like ️☁️

One of the biggest benefits that we can enjoy from being hosted with AWS is not having to manage stuff. Running your own message bus might be something that separates your business from your competition, but it might also be undifferentiated heavy lifting.

IMO, if AWS can and will handle scaling issues for you ( to say nothing of only paying for the transactions that you use ), then it might be the right choice for you to let them take care of that for you.

I would also like to point out that running these things without servers isn’t quite the same thing as running them in a traditional setup. I ended up redoing this implementation a few times as I kept finding the rough edges of running things serverless. All were ultimately addressable, but I wanted to keep the complexity of this down somewhat.



CloudFormation is pretty well covered by AWS Advent, we’ll configure this little diddy via the AWS console.


Setup the first lambda, which will be linked to an outgoing webhook in slack

Setup the DynamoDB

👇 You can follow the steps below, or view this video 👉 Video to DynamoDB Create

  1. Console
  2. DynamoDB
  3. Create Table
    1. Table Name table
    2. Primary Key word
    3. Create

Setup the First Lambda

This Lambda accepts the input from a Slack outgoing webhook, splits the input into separate words, and adds a count of one to each word. It further returns a json response body to the outgoing webhook that displays a message in slack.

If the Lambda is triggered with the input awsadvent some words, this Lambda will create the following three keys in dynamodb, and give each the value of one.

  • awsadvent = 1
  • some = 1
  • words = 1

👇 You can follow the steps below, or view this video 👉 Video to Create the first Lambda

  1. Make the first Lambda, which accepts slack outgoing webook input, and saves that in DynamoDB
    1. Console
    2. Lambda
    3. Get Started Now
    4. Select Blueprint
      1. Blank Function
    5. Configure Triggers
      1. Click in the empty box
      2. Choose API Gateway
    6. API Name
      1. aws_advent ( This will be the /PATH of your API Call )
    7. Security
      1. Open
    8. Name
      1. aws_advent
    9. Runtime
      1. Python 2.7
    10. Code Entry Type
      1. Inline
      2. It’s included as app.py in this repo. There are more Lambda Packaging Examples here
    11. Environment Variables
      1. DYNAMO_TABLE = table
    12. Handler
      1. app.handler
    13. Role
      1. Create new role from template(s)
      2. Name
        1. aws_advent_lambda_dynamo
    14. Policy Templates
      1. Simple Microservice permissions
    15. Triggers
      1. API Gateway
      2. save the URL

Link it to your favorite slack

👇 You can follow the steps below, or view this video 👉 Video for setting up the slack outbound wehbook

  1. Setup an outbound webhook in your favorite Slack team.
  2. Manage
  3. Search
  4. outgoing wehbooks
  5. Channel ( optional )
  6. Trigger words
    1. awsadvent
    2. URLs
  7.  Your API Gateway Endpoint on the Lambda from above
  8. Customize Name
  9.  awsadvent-bot
  10. Go to slack
    1. Join the room
    2. Say the trigger word
    3. You should see something like 👉 something like this


Ok. now we want to do the awesome PubSub stuff

Make the SNS Topic

We’re using a SNS Topic as a broker. The producer ( the aws_advent Lambda ) publishes messages to the SNS Topic. Two other Lambdas will be consumers of the SNS Topic, and they’ll get triggered as new messages come into the Topic.

👇 You can follow the steps below, or view this video 👉 Video for setting up the SNS Topic

  1. Console
  2. SNS
  3. New Topic
  4. Name awsadvent
  5. Note the topic ARN

Add additional permissions to the first Lambda

This permission will allow the first Lambda to talk to the SNS Topic. You also need to set an environment variable on the aws_advent Lambda to have it be able to talk to the SNS Topic.

👇 You can follow the steps below, or view this video 👉 Adding additional IAM Permissions to the aws_lambda role

  1. Give additional IAM permissions on the role for the first lambda
    1. Console
    2. IAM
    3. Roles aws_advent_lambda_dynamo
      1. Permissions
      2. Inline Policies
      3. click here
      4. Policy Name
      5. aws_advent_lambda_dynamo_snspublish

Add the SNS Topic ARN to the aws_advent Lambda

👇 You can follow the steps below, or view this video 👉 Adding a new environment variable to the lambda

There’s a conditional in the aws_advent lambda that will publish to a SNS topic, if the SNS_TOPIC_ARN environment variable is set. Set it, and watch more PubSub magic happen.

  1. Add the SNS_TOPIC_ARN environment variable to the aws_advent lambda
    1. Console
    2. LAMBDA
    3. aws_advent
    4. Scroll down
      1. The SNS Topic ARN from above.

Create a consumer Lambda: aws_advent_sns_multiplier

This microservice increments the values collected by the aws_advent Lambda. In a real world application, I would probably not take the approach of having a second Lambda function update values in a database that are originally input by another Lambda function. It’s useful here to show how work can be done outside of the Request->Response flow for a request. A less contrived example might be that this Lambda checks for words with high counts, to build a leaderboard of words.

This Lambda function will subscribe to the SNS Topic, and it is triggered when a message is delivered to the SNS Topic. In the real world, this Lambda might do something like copy data to a secondary database that internal users can query without impacting the user experience.

👇 You can follow the steps below, or view this video 👉 Creating the sns_multiplier lambda

  1. Console
  2. lambda
  3. Create a Lambda function
  4. Select Blueprint 1. search sns 1. sns-message python2.7 runtime
  5. Configure Triggers
    1. SNS topic
      1. awsadvent
      2. click enable trigger
  6. Name
    1. sns_multiplier
  7. Runtime
    1. Python 2.7
  8. Code Entry Type
    1. Inline
      1. It’s included as sns_multiplier.py in this repo.
  9. Handler
    1. sns_multiplier.handler
  10. Role
    1. Create new role from template(s)
  11. Policy Templates
    1. Simple Microservice permissions
  12. Next
  13. Create Function

Go back to slack and test it out.

Now that you have the most interesting parts hooked up together, test it out!

What we’d expect to happen is pictured here 👉 everything working

👇 Writeup is below, or view this video 👉 Watch it work

  • The first time we sent a message, the count of the number of times the words are seen is one. This is provided by our first Lambda
  • The second time we sent a message, the count of the number of times the words are seen is twelve. This is a combination of our first and second Lambdas working together.
    1. The first invocation set the count to current(0) + one, and passed the words off to the SNS topic. The value of each word in the database was set to 1.
    2. After SNS recieved the message, it ran the sns_multiplier Lambda, which added ten to the value of each word current(1) + 10. The value of each word in the database was set to 11.
    3. The second invocation set the count of each word to current(11) + 1. The value of each word in the database was set to 12.

️️💯💯💯 Now you’re doing pubsub microservices 💯💯💯

Setup the logger Lambda as well

This output of this Lambda will be viewable in the CloudWatch Logs console, and it’s only showing that we could do something else ( anything else, even ) with this microservice implementation.

  1. Console
  2. Lambda
  3. Create a Lambda function
  4. Select Blueprint
    1. search sns
    2. sns-message python2.7 runtime
  5. Configure Triggers
    1. SNS topic
      1. awsadvent
      2. click enable trigger
  6. Name
    1. sns_logger
  7. Runtime
    1. Python 2.7
  8. Code Entry Type
    1. Inline
      1. It’s included as sns_logger.py in this repo.
  9. Handler
    1. sns_logger.handler
  10. Role
    1. Create new role from template(s)
  11. Policy Templates
    1. Simple Microservice permissions
  12. Next
  13. Create Function

In conclusion

PubSub is an awsome model for some types of work, and in AWS with Lambda we can work inside this model relatively simply. Plenty of real-word work depends on the PubSub model.

You might translate this project to things that you do need to do like software deployment, user account management, building leaderboards, etc.

AWS + Lambda == the happy path

It’s ok to lean on AWS for the heavy lifting. As our word counter becomes more popular, we probably won’t have to do anything at all to scale with traffic. Having our code execute on a request-driven basis is a big win from my point of view. “Serverless” computing is a very interesting development in cloud computing. Look for ways to experiment with it, there are plenty of benefits to it ( other than novelty ).

Some benefits you can enjoy via Serverless PubSub in AWS:

  1. Scaling the publishers. Since this used API Gateway to terminate user requests to a Lambda function:
    1. You don’t have idle resources burning money, waiting for traffic
    2. You don’t have to scale because traffic has increased or decreased
  2. Scaling the bus / interconnection. SNS did the following for you:
    1. Scaled to accommodate the volume of traffic we send to it
    2. Provided HA for the bus
    3. Pay-per-transaction. You don’t have to pay for idle resources!
  3. Scaling the consumers. Having lambda functions that trigger on a message being delivered to SNS:
    1. Scaled the lambda invocations to the volume of traffic.
    2. Provides some sense of HA

Lambda and the API Gateway are works in progress.

Lambda is a new technology. If you use it, you will find some rough edges.

The API Gateway is a new technology. If you use it, you will find some rough edges.

Don’t let that dissuade you from trying them out!

I’m open for further discussion on these topics. Find me on twitter @edyesed

About the Author:

Ed Anderson has been working with the internet since the days of gopher and lynx. Ed has worked in healthcare, regional telecom, failed startups, multinational shipping conglomerates, and is currently working at RealSelf.com.

Ed is into dadops,  devops, and chat bots.

Writing in the third person is not Ed’s gift. He’s much more comfortable poking the private cloud bear,  destroying ec2 instances, and writing lambda functions be they use case appropriate or not.

He can be found on Twitter at @edyesed.

About the Editors:

Evan Mouzakitis is a Research Engineer at Datadog. He is passionate about solving problems and helping others. He has written about monitoring many popular technologies, including Lambda, OpenStack, Hadoop, and Kafka.

Brian O’Rourke is the co-founder of RedisGreen, a highly available and highly instrumented Redis service. He has more than a decade of experience building and scaling systems and happy teams, and has been an active AWS user since S3 was a baby.

Deploy your AWS Infrastructure Continuously

01. December 2016 2016 0

Author: Michael Wittig

Continuously integrating and deploying your source code is the new standard in many successful internet companies. But what about your infrastructure? Can you deploy a change to your infrastructure in an automated way? Can you run automated tests on your infrastructure to ensure that a change has no unintended side effects? In this post I will show you how you can apply the same processes to your AWS infrastructure that you apply to your source code. You will learn how the AWS services CloudFormation, CodePipeline and Lambda can be combined to continuously deploy infrastructure.


You may think: “Source code is text files, but my infrastructure is different. I don’t have a source file for my infrastructure.” Infrastructure as Code as defined by Martin Fowler is a concept that is helping bring software development practices to infrastructure practices.

Infrastructure as code is the approach to defining computing and network infrastructure through source code that can then be treated just like any software system.
– Martin Fowler

AWS CloudFormation is one implementation of Infrastructure as Code. CloudFormation is a high quality and free service offered by AWS. To understand CloudFormation you need to know about templates and stacks. The template is the source code, a textual representation of your infrastructure. The stack is the actual running infrastructure described by the template. So a CloudFormation template is exactly what we need, a plain text file. The CloudFormation service interprets the template and turns it into a running infrastructure.

Now, our infrastructure is defined by a text file which is exactly what we need to apply the same processes to it that we have for source code.

The Pipeline

The pipeline to build and deploy is a sequence of steps that are necessary to ship changes to your users. Starting with a change in the code repository and ending in your production environment. The following figure shows a Pipeline that runs inside AWS CodePipeline, the AWS CD service.

AWS CodePipeline - Deploying infrastructure continuously

Whenever a git push is made to a repository hosted on GitHub the pipeline starts to run by fetching the current version of the repository. After that, the pipeline creates or updates itself because the pipeline definition itself is also treated as source code. After that, the up-to-date pipeline creates or updates the test environment. After this step, infrastructure in the test environment looks exactly as it was defined in the template. This is also a good place to deploy the application to the test environment. I’m using Elastic Beanstalk to host the demo application. Now it’s time to check if the infrastructure is still in a good shape. We want to make sure that everything runs as it is defined in the tests. The tests may check if a certain port is reachable, if a certain user can login via SSH, if a certain port is NOT reachable, and so on, and so forth. If the tests are successful, the production environment is adapted to the new template and the new application version is deployed.


From Source to Deploy PipelineCodePipeline has native support for GitHub, CloudFormation, Elastic Beanstalk, and Lambda. So I can use all the services and tie them together using CodePipeline. You can find the full source code and detailed setup instructions in this GitHub repository: michaelwittig/automation-for-the-people


The following template snippet shows an excerpt of the full pipeline description. Here you see how the pipeline can be configured to checkout the GitHub repository and create/update itself:



Infrastructure as Code enables you to apply the same CI & CD processes to infrastructure that you already know from software development. On AWS, you can use CloudFormation to turn a text representation of your infrastructure into a running environment stack. CodePipeline can be used to orchestrate the deployment process and you can implement custom logic, such as infrastructure tests, in a programming language that you can run on AWS Lambda. Finally you can treat your infrastructure as code and deploy each commit with confidence into production.

About the Author

Michael WittigMichael Wittig is author of Amazon Web Services in Action (Manning) and writes frequently about AWS on cloudonaut.io. He helps his clients to gain value from Amazon Web Services. As a software engineer he develops cloud-native real-time web and mobile applications. He migrated the complete IT infrastructure of the first bank in Germany to AWS. He has expertise in distributed system development and architecture, with experience in algorithmic trading and real-time analytics.